Math 115
Fall 2018
Lecture 16

$$
\begin{aligned}
& 3 a^{2}+b^{2}=c^{2} ? \\
& y=m x+?_{b}^{2} d=r t
\end{aligned}
$$

Monomial: It is when variables) are raised to whole number exponents and are multiplied by any number.

Coefficient
Exponent or Sum of exponents \rightarrow Degrees. when there is no variable \rightarrow Constant

$$
\begin{aligned}
& 25 x^{3} \rightarrow \text { Deg. }=3, \text { Coef. }=25 \\
&-17 x^{2} y^{4} \rightarrow \text { Deg. }=2+4=6, \text { Coff. }=-17 \\
& \frac{3}{4} x y z \rightarrow \text { Deg. }=1+1+1=3, \text { Coef. }=\frac{3}{4} \\
& 100 \rightarrow \text { Constant } \rightarrow \text { Deg. }=0 \\
&-x^{2} y^{2} z \rightarrow \text { Monomial } \\
& \rightarrow \text { Coed. }=-1 \\
& \rightarrow \text { Degree }=1+2+7=10
\end{aligned}
$$

Binomial: It is the sum of two monomials.

$$
4 x+7,-2 x^{3}+8 x, x-10, \frac{2}{3} x^{2}-\frac{3}{7}
$$

Highest Deg. \rightarrow Degree of binomial
Corf. of the monomial with higest degree is Called the Leading Corf.

$$
-2 x^{3}+8 x
$$

Monowil	D	C
$-2 x^{3}$	3	-2
$8 x$	1	8

Deg. $=3, L \cdot C .=-2$
$7 x-10$

Deg. $=1$
L.C. $=7$

Monomial	D	C
$7 x$	1	7
-10	0	Constant

Const. $=-10$

$$
-3 x^{2} y^{3}+10 x y
$$

Deg. $=5$

$$
\text { L.C. }=-3
$$

Monomial	D	C
$-3 x^{2} y^{3}$	$2+3=5$	-3
$10 x y$	$1+1=2$	10

No Constant.

Trinomial: It is the sum of three monomials.

$$
x^{2}-5 x+8,3 x^{5}-12 x^{3}+18 x, 4 x^{2} y^{4}-10 x y^{6}+12
$$

The degree ε, leading coef are determined by the same method for binomials.

$$
\begin{aligned}
& x^{2}-5 x+8 \\
& D=2 \\
& \text { L.C. }=1 \\
& \text { Const. }=8
\end{aligned}
$$

Monomial	D	C
x^{2}	2	1
$-5 x$	1	-5
8	0	Constant

$$
\begin{array}{ll|l}
-4 x^{3} y^{4}+12 x y-100 \\
D=7 & \text { Monomial } & D \\
\hline-4 x^{3} y^{4} & 3+4=7 & -4 \\
\hline 12 x y & 1+1=2 & 12 \\
\text { L.C. }=-4 & \frac{100}{} & 0
\end{array} \text { Constant } \quad \text { Const. }=-100 \quad 1 \begin{aligned}
& \\
& \hline-100
\end{aligned}
$$

Polynomial: It is the sum of monomials. Monomial is a polynomial with one term.
Binomial " $=$ two terms.
Trinomial s" Thee c.

$$
\frac{14 x^{6}-3 x^{2}+5 x^{3}-3 x^{5}+14-12 x}{\text { Polynomial }}
$$

write it in descending order. Power going down

$$
\begin{aligned}
& 14 x^{6}-3 x^{5}+5 x^{3}-3 x^{2}-12 x+14 \\
& D=6 \\
& \text { L.C. }=14 \\
& \text { Canst. }=14
\end{aligned}
$$

Consider

$$
32 x y^{3}-15 x^{6} y^{2}-100+x y-x^{2} y^{4}
$$

Monomial	D	C	
$32 x y^{3}$	$1+3=4$	32	
$-15 x^{6} y^{2}$	$6+2=8$	-15	
-100	0	Constant	L.C. $=-15$
$x y$	$1+1=2$	1	Constant $=-100$
$-x^{2} y^{4}$	$2+4=6$	-1	

$$
-15 x^{6} y^{2}-x^{2} y^{4}+32 x y^{3}+x y-100
$$

To Simplify a polynomial, we can only Combine like monomials

Same Variables
Simplify. Same exponents

$$
\begin{aligned}
& \frac{7 x^{3}+2 x^{2}-8 x+1-2 x^{3}}{=}+8 x-5 x^{2}-7 \\
& =5 x^{3}-3 x^{2}-6 \quad \begin{array}{l}
\text { Trinomial } \\
D=3, \text { L.C. }=5, \text { Const. }=-6
\end{array}
\end{aligned}
$$

Simplify

$$
\underline{\underline{7 x y}-4 x^{3} y^{2}+5 x^{2} y^{3}+3 x^{3} y^{2}-7 x y+12 x^{2} y^{3}} \underline{\underline{=}}
$$

$$
=-1 x^{3} y^{2}+17 x^{2} y^{3}
$$

$$
=-x^{3} y^{2}+17 x^{2} y^{3} \quad \text { Degree }=5
$$

Simplify

$$
\begin{aligned}
& \frac{12 x^{6} y^{2}}{=}-17 x^{2} y^{6}-11 x^{6} y^{2}+x y+17 x^{2} y^{6}-x y \\
& =x^{6} y^{2} \text { monomial, } D=8, \quad C=1
\end{aligned}
$$

Use exponential rules to Simplify:

$$
\begin{aligned}
&\left(-2 x^{4}\right)^{3} \cdot x^{5}=(-2)^{3}\left(x^{4}\right)^{3} \cdot x^{5} \\
&=-8 x^{12} \cdot x^{5} \\
&=-8 x^{17} \quad \begin{array}{l}
\text { Monomial } \\
D=17, C=-8
\end{array} \\
&\left(-3 x^{5}\right)^{2} \cdot\left(-4 x^{6}\right)^{3} \\
&=(-3)^{2}\left(x^{5}\right)^{2} \cdot(-4)^{3}\left(x^{6}\right)^{3}=9 x^{10} \cdot(-64) x^{18} \\
& \text { Monomial, } D=28, C=-576=9 \cdot(-64) x^{10} x^{18}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Distribute } \sum_{i} \text { Simplify } \\
& 4\left(2 x^{2}-5 x^{0}-1\right)-3\left(3 x^{2}-7 x+1\right) \\
& =8 x^{2}-20 x-4-9 x^{2}+21 x-3 \\
& =-x^{2}+x-7 \quad \text { Trinomial } \\
& D=2 \text {, LC. }=-1 \text {, Cost. }=-7 \\
& -5\left(3 x^{2} y^{3}-8 x y^{2}+3\right)-3\left(5 x^{2} y^{3}+13 x y^{2}-5\right) \\
& =-15 x^{2} y^{3}+40 x y^{2}-15-15 x^{2} y^{3}-39 x y^{2}+15 \\
& =-30 x^{2} y^{3}+x y^{2} \quad \begin{array}{c}
\text { Binomial } \\
D=5, ~ \text { LC. }=-30,
\end{array} \begin{array}{c}
\text { No } \\
\text { constant }
\end{array}
\end{aligned}
$$

Nov 19-7:01 AM

Distribute ε_{1} simplify

$$
\begin{aligned}
& 4 x^{2}\left(3 x^{3}-5 x^{2}+6\right) \\
& =4 x^{2} \cdot 3 x^{3}-4 x^{2} \cdot 5 x^{2}+4 x^{2} \cdot 6 \\
& =12 x^{5}-20 x^{4}+24 x^{2}
\end{aligned}
$$

Trinomial

$$
D=5, L \cdot C=12
$$

No Constant
Distribute $\&$ Simplify:

$$
\begin{aligned}
& -2 x^{2} y^{3}\left(5 x^{3} y-4 x y+1\right) \quad \rightarrow \text { Trinomial, } D=9=-10 \\
& =-2 x^{2} y^{3} \cdot 5 x^{3} y-2 x^{2} y^{3} \cdot(-4 x y)-2 x^{2} y^{3} \cdot(1) \\
& =-10 x^{5} y^{4}+8 x^{3} y^{4}-2 x^{2} y^{3}
\end{aligned}
$$

find Area
find the volume

$$
V=L \omega H
$$

$$
V=10 x^{6} \cdot 5 x^{3} \cdot \frac{1}{50} x^{11}
$$

$$
=x^{6} x^{3} x^{11}
$$

$$
=x_{x^{20}}^{\text {units }^{3}}
$$

Monomial

$$
D=20, C=1
$$

find the Volume

$$
\begin{aligned}
V & =S^{3} \\
V & =\left(5 x^{4} y^{6}\right)^{3} \\
& =5^{3}\left(x^{4}\right)^{3}\left(y^{6}\right)^{3} \\
V & =125 x^{12} y^{18} \text { units }^{3}
\end{aligned}
$$

Monomial

$$
D=12+18=30, C=125
$$

FOIL method:

Inside ones
\rightarrow outside ones
\rightarrow first ones
multiply:

$$
\begin{array}{r}
(2 x+3)(4 x+5) \quad \Delta=8 x^{2}+22 x+15 \\
\text { Trinomial } \\
=2 x \cdot 4 x+2 x .5+3 \cdot 4 x+3.5 \quad \begin{array}{l}
D=2 \\
=8 x^{2}+10 x+12 x+15
\end{array} \quad \text { Const }=15
\end{array}
$$

Multiply using FOIL:

$$
\begin{aligned}
& (4 x+3)(2 x-5) \\
& =8 x^{2}-20 x+6 x-15 \\
& =8 x^{2}-14 x-15 \quad \begin{array}{l}
\text { Trinomial } \\
D=2, \text { L.C. }=8 \\
\text { Const. }-15
\end{array} \\
& \left(5 x^{2}+6\right)\left(5 x^{2}-6\right) \\
& =25 x^{4}-30 x^{2}+30 x^{2}-36 \\
& =25 x^{4}-36 \quad \begin{array}{l}
\text { Binomial } \\
D=4, \text { L.C. }=25,
\end{array} \\
& =36
\end{aligned}
$$

Nov 19-7:54 AM

Solve $\dot{\xi}_{1}$ graph

$$
\begin{aligned}
&-4<2 x-6 \leq 4 \\
&-4+6<2 x-6+6 \leq 4+6 \\
& 2<2 x \leq 10 \\
& \frac{2}{2}<\frac{2}{2} x \leq \frac{10}{2} \\
&\{x \mid 1<x \leq 5\}
\end{aligned}
$$

Shade the Solution

$$
\begin{aligned}
5 x & -2 y>4 \\
-2 y & >-5 x+4 \\
\frac{-2}{-2} y & <\frac{-5}{-2} x+\frac{4}{-2} \\
y & <\frac{5}{2} x-2
\end{aligned}
$$

Hint: write in
slope-Int form

find eqn of a line that contains $(4,-3)$ with slope $\frac{3}{2}$. Graph $\dot{\varepsilon}$ label clearly.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-3)=\frac{3}{2}(x-4) \\
y+3=\frac{3}{2} x-\frac{3}{2} \cdot 4 \\
y=\frac{3}{2} x-6-36 \\
y=\frac{3}{2} x-9
\end{gathered}
$$

Solve by Subs. method:

$$
\left\{\begin{array}{cc}
3 x+2 y=8 & 3 x+2(4-x)=8 \\
y=4-x & 3 x+8-2 x=8 \\
y=4-0 & x=8-8 \\
y=4 & x=0
\end{array}\right\}
$$

Solve

$$
\begin{array}{rl}
3\left\{\begin{aligned}
3 x+4 y & =-2 \\
4 x+3 y & =2
\end{aligned} \Rightarrow \frac{\left\{\begin{array}{l}
9 x+12 y
\end{array}\right.}{-4 x} \begin{array}{rl}
-16 x-12 y & =-8 \\
-7 x & =-14
\end{array}\right. \\
3(2)+4 y & =-2 \\
6+4 y & =-2 \\
4 y & =-8 \\
4 & y=-2
\end{array}
$$

find ign of a line that contains $(1,-5)$ and is perpendicular to $y=\frac{-1}{3} x+6$.

Graph both lines.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-5)=3(x-1) \\
y+5=3 x-3 \\
y=3 x-8
\end{gathered}
$$

$$
m=-\left(\frac{-3}{1}\right)=3
$$

Mr. Flores bought a phone for \$135.
Sale's tax rate is 8%
Find actual price. Phone $+\operatorname{Tax}=135$
Phone $\rightarrow x$

$$
\operatorname{Tax} \rightarrow 8 \% x
$$

$$
\begin{gathered}
x+.08 x=135 \\
1.08 x=135 \\
x=\frac{135}{1.08} \\
x=125
\end{gathered}
$$

find two consecutive odd integers such That the sum of 4 times the smaller one and 3 times the larger one is 167.

$$
\begin{array}{r}
x \quad \sum_{1}^{\prime} x+2 \\
4 \cdot \text { Smaller }+3 \cdot \text { larger }=167 \\
4 \cdot x+3(x+2)=167 \\
4 x+3 x+6=167
\end{array}
$$

Find two supplementary angles such that 3 times one of them is equal to 240° more than the other one.

$$
\begin{aligned}
& x \& 180-x \\
& 3 \sqrt{x}=180-x+240 \\
& 3 x+x=420 \\
& 4 x=420 \\
& x=105
\end{aligned}
$$

I need 100 liters of 55\% acid Solution. I have unlimited supply of 40% acid $\dot{\xi}$ 60\% acid Solutions.
How many liters of each?

$$
\left\{\begin{array} { c }
{ x + y = 1 0 0 } \\
{ x + y = x + 6 0 \% y = 5 5 \% (1 0 0) }
\end{array} \quad \left\{\begin{array}{l}
x+y=100 \\
40 \%+.6 y=55
\end{array}\right.\right.
$$

Nov 19-9:04 AM

$$
\left.\begin{aligned}
& \because\left\{\begin{array} { l }
{ x + y = 1 0 0 } \\
{ \div 2 + 6 y = 5 5 0 }
\end{array} \quad \left\{\begin{array}{l}
x+y=100 \\
2 x+3 y=275 \\
2 x+20 \% \\
25 \text { liters of } 60 \\
25 \text { liters of } 40 \%
\end{array}\right.\right.
\end{aligned} \begin{aligned}
& \frac{-2 x-2 y=-200}{2 x+3 y=275} \\
& 2 x
\end{aligned} \right\rvert\,
$$

Mike has $\$ 5.20$ in Quarter \&ं Dimes only. He has 25 coins in total. How many of

$$
7 \text { Dimes. }
$$

Lisa needs 80 pounds of Coffee at $\$ 2.15 / \mathrm{lb}$.
Store has two brands of coffee. one sells @ \$1.40/lb, other one Sells @ \$2.40/lb. How many pounds of each?

$$
\left\{\begin{array} { l }
{ x + y = 8 0 } \\
{ 1 . 4 0 x + 2 . 4 0 y = 2 . 1 5 (8 0) }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+y=80 \\
1.4 x+2.4 y=172
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \text { each? } \\
& \begin{array}{l}
\begin{array}{l}
\text { each? } \\
R \rightarrow \text { Quarters } \\
D \rightarrow \text { Dimes }
\end{array} \div 5
\end{array}\left\{\begin{array}{c}
R+D=25 \\
25 R+10 D=520
\end{array}\right. \\
& -2\left\{\begin{array} { l }
{ R + D = 2 5 } \\
{ 5 R + 2 D = 1 0 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-2 R-2 D=-50 \\
\frac{5 R+2 D}{}=104 \\
3 R
\end{array}\right.\right. \\
& 18 \text { Quarters }
\end{aligned}
$$

